--- # Vowel Perception and Speaker Normalization
### Will Styler --- # Vowel Perception is Basically Magic
### Will Styler ---
--- ### Review: What is a vowel? * A vowel is voicing passing through (and resonating in) an unobstructed vocal tract! * If we change the position of the tongue, we change the resonances ---
--- ### Review: What is a vowel? A vowel is voicing passing through (and resonating in) an unobstructed vocal tract! If we change the position of the tongue, we change the resonances * Different resonances *filter* the sound differently and determine the vowel quality * **Different tongue shapes create different resonances, and different vowels!** ---
--- ### What do vowels sound like? * We talk about vowel quality in terms of "formants" * These are bands of the spectrum where the energy is strongest * The frequencies of these formants are our primary cues * Bandwidth and power of these formants can be helpful too ---
---
--- ### Vowel formants * F1 and F2 are generally considered to be the most important * F3 is good for rounding and rhoticity * We talk about them in terms of frequency, because that's their most crucial characteristic --- ### Formants alone can be enough for some perception! --- ### Sine Wave Speech - Take an existing speech sample, and generate sine waves approximating the formants ---
--- ### Sample Sine Wave Speech F1:
F2:
F3:
Combined:
Original:
--- ### There's more to vowels than formants - Formants tell us nothing about F0 - Things like voice quality and nasality have other spectral reflexes - “Secondary” spectral cues like formant amplitude and spectral tilt can overwhelm formant cues - Vowel recognition is possible just using overall spectral shape - But this can start to approximate formants quickly! - But we just keep coming back to formants as the primary cue to vowel place --- ### So, we think about vowels in terms of formants ---
Different American English vowels, as spoken by a male speaker
--- ### Vowel formants are reflections of articulations --- ### The IPA chart is acoustic! ---
---
---
---
--- So... * We listen for formants * We figure out their frequencies * Then we know which vowel we’re hearing. * ### What’s the problem? --- # Language is crazy * (In Linguistics, that's *always* the problem) --- ### Why is vowel perception hard? * Vowel differences are gradient * Dialect and language variation is everywhere * Speakers vary from person to person. *A lot!* * Speakers also vary from moment-to-moment --- ## Perceptual Gradience --- ### Perceptual Gradience * You can make an infinite number of tongue shapes causing an infinite number of vowels. * There's no "alveolar ridge" to give a steady target * Phonemes have perceptual boundaries * Vowels with formant values in between phonemes are rough * Not all listeners agree on where the boundaries are between, say, /e/ and /ɛ/ --- ### Date vs. Debt Date:
Debt:
?:
??:
???:
--- ### Let's do an experiment!
--- The first and last sounds have formants like the typical English /eɪ/ and /ɛ/vowels
--- ... but in the middle, we're not really sure what's going on
--- ## Phonemic Inventory plays a major role in categorization! --- ### Language as a perceptual factor * The vowel inventory in a language has a strong effect on the perception of vowels * If you have lots of vowels, each one gets less acoustic (and perceptual) elbow room --- ### Spanish
--- ### English
--- ### Swedish
--- ## Speaker Variation! --- ### Speaker Vowel Space Variation * Different speakers produce different resonances, even for the “same” vowels * Vocal tracts can be shorter, longer, wider... ---
--- ### Speaker Vowel Space Variation Different speakers produce different resonances, even for the “same” vowels * Speaker can have colds or allergies, can have more 'nasal' voices... * Sociolinguistic factors galore * Every person has a different set of basic vowel formant positions * This is called the speaker’s “vowel space” ---
---
--- ### Some people even acknowledge this * "Yeah, sure, there's some variation, but no big deal, it's OK..." ---
---
--- ## But it's even worse than it seems... --- ### Moment-to-moment Vowel Variation * Even the same speaker will have variation from moment to moment * Sometimes we misarticulate, accidentally making the wrong vowel quality * Or we talk with food in our mouths, producing different resonances * Or sometimes, we’re just plain lazy * This leads to constant and massive changes in vowel production ---
---
---
---
--- ### Every person you've ever talked with has had different vowel formant patterns * ... and yet, we understand each other, somehow --- ## See, I told you: Magic
--- ### How do we accomplish this perceptual magic? --- ### Dealing with vowel variability * We stack the deck in our favor using the phonology of the language * We use non-formant-related cues such as vowel length * We attend to context * We adjust to individual speakers (or vocal tracts) through Speaker Normalization * Then, if all else fails, we pretend that we understood, and hope for the best --- ## Dirty Phonological Tricks --- ### Vowel Inventories are designed for perceptibility * Vowels are spread through the mouth --- ### Spanish
--- ### English
--- ### Swedish
--- ### Vowel Inventories are designed for perceptibility Vowels are spread through the mouth * Languages try to maintain perceptual contrast (to keep things as perceptually unambiguous as possible) * /i, e, a, o, u/ more common than /i, y, e, œ, ɛ/ * Contrasts that are tough to hear go away! * Rounding is used to distinguish vowels which might otherwise be confusable * /i, u/ not /y, u/ --- ### Vowel Length can help too! * English tense vowels (/i, e, o, æ, ɔ, ɑ/) are longer than lax vowels (/ɪ, ʊ, ʌ, ɛ/)
Data from Rositske 1939
--- ## Context helps! --- ### The Role of Context * Context helps us to understand words even if the phonemes are acoustically ambiguous * Easier to understand “Hello” in its normal conversational context * If you’re not expecting a word, you’ll have to fight harder to understand it. * “Hi, John! Partial Nephrectomy!” * “Ohh, Invasive Adenocarcinoma arising in tubulovillious adenoma” * Nobody runs into rooms and shouts "bat!" --- ## Speaker Normalization --- ### Speaker Normalization * Every speaker you meet has acoustically different vowels * We are able to adjust very quickly, and have little trouble with later understanding * The process by which we adjust is called “Speaker Normalization” * This process isn’t entirely understood * That's a *massive* understatement --- ### History of Normalization * Differences in absolute vowel qualities were noted very early on * Two Competing Theories in the 40’s and 50’s: * Peterson: We identify vowels based on their absolute formant frequencies * Joos: We identify vowels based on their relative formant structures * If Joos is right, then prior context aids in normalization * Ladefoged and Broadbent set out to test that idea in “Information conveyed by vowels” in 1957 --- ### *Information Conveyed by Vowels* * Ladefoged and Broadbent 1957 * Six versions of an introductory sentence were synthesized, each with different formant structures * Four test words were synthesized as well * Listeners heard different combinations of test words and sentences * *If vowel perception is about absolute frequencies, the prior sentence shouldn't matter!* ---
---
--- # 1957! --- They had to paint what they wanted on glass
--- Then feed it into an analog sound synthesizer
--- ### The results weren't too pretty Stimulus #4:
Stimulus #5:
Stimulus #6:
--- ... but it worked! --- ### Different contexts led to different perception!
--- ### Ladefoged and Broadbent: Conclusions > “The linguistic information conveyed by a vowel is largely dependent on the relations between the frequencies of its formants and the formants of other vowels occurring in the same auditory context” * This set the stage for future work in normalization! --- ## So, uh, how's that work going? --- We've got two main theories! --- ### Speaker-intrinsic vowel space normalization * Normalization is a process that “happens” * You meet somebody, you create a model of their vowel space, and you move on * These models of speaker vowels are maintained in memory * One model per person, and a new model each time! --- ### Speaker-extrinsic vowel space normalization * We store information from *every vowel we hear*! * Normalization is then just bulk comparison and probability * Vowel identities are probabilistically determined * One might start with an “English” vowels model * Then, you build a per-speaker exemplar cloud * Both your per-speaker and overall models change ---
--- ### We don't know which is more accurate! --- ### What do we know about normalization? * It’s not just about the point vowels (/i, a, u/) as Joos suggested (Verbrugge et. al. 1976) * Context influences Normalization (as in Ladefoged and Broadbent) * Knowledge about the speaker (gender, sociolinguistic data) influences normalization (Strand 2000) * Recent context might be more important than older context (Ciocca, Wong, et al. 2006) * The normalization process shows up in reaction time during vowel identification tasks (Haggard and Summerfield 1977) --- ### What else do we know about normalization? * Breath sounds don’t provide good information for normalization, and F0 isn’t a critical factor (Whalen & Sheffert 1997) * More context seems helpful, but only to a certain point (Kakehi 1992) * We have to normalize consonants too * Some evidence that vowel formants are used to normalize /s/ vs. /ʃ/ * Vowel nasality appears to require normalization too (Styler (to appear)) * Infants can normalize to vowels (Kuhl 1979) * So can dogs (Baru 1975) and Zebra Finches (Ohms et al 2009) --- These finches are a *major* problem. ---
---
---
--- ### This suggests that normalization may be a more general cognitive process - Other animals show awareness of vocal tract size differences - 'Female koalas prefer bellows in which lower formants indicate larger males' (Charlton et al 2012) - "Attributing variation to cause" is something we're generally good at - Color Normalization ---
---
---
--- "OK, OK, we get it. Nothing's real. Everybody varies. Speech study is impossible. Let's change to syntax." --- ## How do we cope as researchers? --- ### Mathematical Normalization - Not cognitive theories, but useful for people who want vowel variation “out of their way” > “Various algorithms have already been proposed for this purpose. The criterion for their degree of success might be that they should maximally reduce the variance within each group of vowels presumed to represent the same target when spoken by different speakers, while maintaining the separation between such groups of vowels presumed to represent different targets.” (Disner 1979) - Allows for more principled across-speaker comparison - Statistical in nature, rather than contextual or “linguistic” --- ### Lobanov (1971) Normalization
- σ is the Standard Deviation of all tokens around the vowel mean - Done for each formant, for each vowel - Leaves you with formant points for each token which are more comparable across speakers - This can be done on your own, or using [NORM](http://lingtools.uoregon.edu/norm/norm1.php) or vowels() in R --- ## Danger!!
--- ## **Vowel Normalization is imperfect** - It reduces across-speaker variability, but doesn't remove it completely - The end results are suitable only for rough comparison among speakers - The resulting numbers are abstractions - Disner finds these algorithms good within language - But for cross-language analyses, things get dangerous - **Don't pretend it's solved the problem!** - It's just makes it possible to make basic comparisons --- ### Wrapping up * Formants (F1 & F2) are the primary means of identifying vowels * Vowel charts, although well-intentioned, are dirty, dirty abstractions * Vowel perception is complicated by the enormous variation between speakers and tokens * Phonology, Context, and Secondary Cues help to make things perceptually easier * There's not a strong consensus on how exactly we normalize across speakers - Or how Zebra finches do * Vowel perception is basically magic ---
---
Thank you!
http://savethevowels.org/talks/vowelperception_advanced.html --- # References Baru, A. V. (1975). Discrimination of synthesized vowels /a/ and /i/ with varying parameters (f0, intensity, duration, # of formants) in dog. In G. Fant, & M. A. A. Tatham (Eds.), Auditory Analysis and perception of speech. New York: Academic Press. Ciocca, V., Wong, N. K. Y., Leung, W. H. Y., & Chu, P. C. Y. (2006). Extrinsic context affects perceptual normalization of lexical tone. The Journal of the Acoustical Society of America, Vol. 119, No. 3, 1712-1726. Charlton, B. D., Ellis, W. A. H., Brumm, J., Nilsson, K., and Fitch, W. T. (2012). Female koalas prefer bellows in which lower formants indicate larger males. Animal Behaviour, 84(6):1565– 1571. Disner, S.F. (1980). Evaluation of vowel normalization procedures. The Journal of the Acoustical Society of America, Vol 67(1), 253-261. Joos, M. (1948). Acoustic Phonetics - Supplement to Language. Baltimore: Linguistic Society of America. Ladefoged, P., & Broadbent, D. E. (1957). Information Conveyed by Vowels. The Journal of the Acoustical Society of America, Volume 29, Number 1, 98-104. Lobanov, B. (1971). Classification of Russian Vowels Spoken by Different Speakers. The Journal of the Acoustical Society of America, 49(2B):606–608. Ohms et al. Zebra finches exhibit speaker-independent phonetic perception of human speech. Proceedings of the The Royal Society of Biological Sciences (2009) Rositzke, H. A. (1939). Vowel-Length in General American Speech. Language, Vol. 15, No. 2, 99-109. Verbrugge, R. R., Strange, W., Shankweiler, D. P., & Edman, T. R. (1976). What information enables a listener to map a talker's vowel space? Journal of the Acoustical Society of America, Vol. 60, No. 1, 198-212. Whalen, D. H., & Sheffert, S. M. (1997). Normalization of Vowels by Breath Sounds. In K. Johnson, & J. W. Mullenix (Eds.), Talker Variability in Speech Processing (pp. 133-143). San Diego, CA: Academic Press Ltd. ---