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Styler, William F. IV (MA, Linguistics)

Establishing the nature of context in speaker vowel space normalization

Thesis directed by Dr. Rebecca Scarborough

This study was designed to gain insight into the process through which humans 

are able to adjust to and understand the speech of unfamiliar speakers, referred to a 

"speaker normalization".   Prior research has suggested that, in order for 

normalization to occur, a listener has to have some speech data (or "context") to 

process.  The goal of this work was to further elucidate the role of this context, by 

searching for any effects that frequency of token occurrence and ordinal primacy may

have on normalization

Comparison of different stimuli in a forced-choice vowel identification task 

yielded no statistically significant differences, and even after an analysis of sources of

error, neither a primacy effect nor a frequency effect was found to be supported by the

data.  This lack of support raises many interesting theoretical questions and suggests a

variety of future avenues of exploration in the field of speaker normalization research.
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Even when two people speak the same language, the sounds that they produce in 

the process can vary greatly because every voice is unique.  This uniqueness can stem

from vocal tract shape and length differences, from differences in the way we produce

sounds and other articulatory habits, from differences in the base pitch and pitch 

range of the voice, and from other physiological factors that may be congenital or 

acquired.  

Not all of this variation comes from set characteristics, though.  A speaker with 

any sort of upper respiratory illness or laryngitis will sound different than the same 

speaker would in good health, and any sort of stress or injury to any part of the vocal 

tract can affect speech drastically.  Even throughout the course of the day, a person's 

speech will vary due to tiredness and wear from frequent talking.  

When we add to these factors the sorts of changes that can be caused by missed 

articulations and speech errors, we see that there's no shortage of unconscious 

variation even among various utterances made by the same speaker.  Once 

sociolinguistic, linguistic and dialectal variation factors are added in, our first 

interaction with an unfamiliar speaker is seen to be a formidable linguistic challenge. 

Although we never consciously notice the process, every time we're confronted with a

new speaker, we're asked to very quickly recognize, interpret, and adjust to the fine 

distinctions between sounds of our language as produced by a unique set of 

articulations of an unfamiliar vocal tract, all in addition to the already complex 

process of comprehending speech and deriving meaning from an acoustic signal.

This process of adjustment to an unfamiliar voice, known as speaker 

normalization (or talker normalization), has been studied by linguists and 

psychologists for many years, from a variety of different angles.  The difference in 

absolute vowel qualities among speakers was first noticed by Martin Joos as early as 

1948 (Joos, 1948), but Ladefoged and Broadbent's landmark study (Ladefoged & 

- 1 -



Broadbent, 1957) was one of the first to actually examine the perceptual effects 

caused by the variation of vowels between speakers.  Through the presentation of an 

acoustically manipulated context, they first observed that context and prior 

knowledge of a speaker's voice affects our perception of words, and laid the 

groundwork for much of the continuing work in the field of speaker normalization.

In addition to providing the first concrete evidence that a normalization-like effect

is present in speech processing, the fact that Ladefoged and Broadbent's methodology

produced results also shows that context is very much relevant in speech processing.  

Knowing that context is important, the next logical question is to ask which sounds 

provide the 'best' information for coping with these variations.  Early theories 

suggested that the point vowels (i, a, u) played a more significant role in speaker 

normalization (Joos, 1948); however, experiments by Verbrugge et. al. (Verbrugge, 

Strange, Shankweiler, & Edman, 1976) found that point vowels do not have a more 

significant role in speaker normalization than, for example, central vowels.  Other 

hypotheses about the roles of particular sounds in context have been proposed and 

tested, ranging from the role of F3 in providing vocal tract length information 

(Nordström and Lindblom 1975) to a role for breath sounds in vowel normalization 

(Whalen & Sheffert, 1997), but no certain conclusions have been reached.

So, we see that great deal of work has been done to establish that we depend on 

context for speaker normalization, and that some have considered which specific 

sounds might aid in the normalization process.  However, few have examined the role

of the positioning and frequency of the calibrating sound in the context provided.  In 

examining normalization to tone in Cantonese, Ciocca et al suggested that both 

preceding and following context had an effect on listener perception, but even more 

interestingly, suggested that listeners weight recent context more heavily than older 

context (Ciocca, Wong, Leung, & Chu, 2006).  Beyond this study, though, I have 

found no information on the nature of the context required for speaker normalization, 
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and the role of frequency and position seem to be largely unexplored.  

This seems to be a significant oversight, because in typical interaction with an 

unfamiliar speaker, it's very uncommon to have only a single word or vowel on which

to base one's normalization and form a model.  More commonly, we are presented 

with a phrase or sentence containing a variety of different sounds and vowels.  In 

many cases, a given sentence or utterance might contain multiple tokens of the same 

sounds, which given the variability of speech even in a single utterance, may not be 

acoustically identical.  

The fact that we can still normalize to speech even in the presence of this 

variability is astounding, and the mechanism by which this occurs deserves 

consideration.  In a situation where a person is presented with acoustically varying 

vowels in a sentence from an unfamiliar speaker, there are several different strategies 

that could conceivably be used to normalize to an unfamiliar vowel space (and then 

possibly refine any model that may be created).

If the data from a single vowel were sufficient to properly normalize to an 

unfamiliar speaker's voice (as Verbrugge et. al. suggest), then conceivably, vowel-

space normalization could be based solely on the first vowel to which a listener is 

exposed, and further context might be unnecessary or ignored.  This hypothesis 

(henceforth referred to as 'the primacy hypothesis') would assume that vowel-space 

normalization is a finite process, and that it takes place only for a short period of time 

when we first encounter an unfamiliar speaker.  Under this account of normalization, 

a listener hears a single example of a given vowel, analyzes it, forms a model of the 

speaker's vowel space (although I'm here remaining neutral about which form that 

model may take), and is then equipped to understand the unfamiliar speaker's speech. 

However, given the variations often present between different tokens of the same 
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vowel produced by the same speaker, such a one-time normalization would seem 

somewhat unlikely.  If a listener normalized, once and for all, based on the first token 

of a single vowel, and that vowel were somehow unusual either due to coarticulation, 

a mispronunciation, or just a slip of the tongue, the listener would be at an inherent 

disadvantage for the rest of their communication with the speaker.

  

In order to avoid this, one might expect a listener to normalize over a longer 

period of time, also paying attention to vowel tokens beyond the very first 

encountered.  This way, the effects of an unusual first usage on the listener's model 

would be minimized by the tide of more or less consistent, more representative 

usages.  This would assume that, as Ciocca et. al. (2006) have argued for tone, the 

listener keeps a sort of "running average" of the speaker's vowels, and every token 

influences that idealized, "canonical" vowel.  Under such an account (henceforth 'the 

frequency hypothesis'), the frequency with which the different vowel qualities occur 

would play a large role in a listener's normalization to a given vowel phoneme. 

In addition, it's possible that both primacy and frequency play a role in speaker 

normalization, and that both factors are weighed both alongside and against one 

another when a given vowel is being processed.   This combined effect hypothesis 

posits a much more involved algorithm, a series of criteria and normalization 

methodologies applied to any given sound, which exchanges some simplicity for 

greater flexibility.

 Historically, studies of normalization have considered the quality of a given 

vowel to be both unique to each speaker and consistent in their speech.  Because 

vowel quality can vary greatly between multiple tokens in the speech of the same 

speaker, and as such, even a lengthy context will seldom be perfectly consistent, the 

process by which a listener normalizes when faced with inconsistency is important to 

the study of speaker normalization.   By studying the normalization process when the 
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vowels in the context given are not of consistent quality, I hope to gain insight into 

the process by which we adjust to inconsistent speech, as well as into the 

normalization process in general.

I – Experimental Design background

This experiment is designed to investigate the previously discussed mechanisms 

of speaker normalization by examining the effects, if any, that the frequency and 

position of a given acoustic realization of a vowel will have on speaker normalization.

My goal is to do this by manipulating the formant pattern of one or more instances of 

the vowel /i/ in a context sentence, and then measuring listeners' reaction times in a 

simple word identification task using target words which include the manipulated 

vowel.  

During the study, listeners will be asked to listen to a series of 40 strategically 

altered context sentences, each followed directly by either "beet" or "bit".  After each 

sentence, the listener will indicate (using a button box) which of the two words that 

they heard, and their reaction time will be measured.  There will be twenty test 

sentences, followed by a "beet", interspersed with twenty filler sentences (with "bit") 

to keep listeners interested in the task.   The reaction times from the twenty test 

sentences will be then compared to gauge difficulty in normalization.

One underlying assumption of this methodology is that processing speech from an

unfamiliar speaker requires extra processing time, and that speakers will require more

time to identify a vowel that does not fit the expectations created by normalization 

than they would for a vowel that does.  For example, if a listener is presented with 

five consistent /i/ phonemes of a given quality and then asked to identify an /i/ 

phoneme of differing quality, we would expect that they would take longer to do so 

than had they been given five /i/ phonemes of consistent quality and asked to identify 
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an /i/ of the same quality.   Prior research by Haggard & Summerfield, 1977 supports 

these assumptions:

"For pairs of voices having different average formant frequencies, and hence involving a

perceptual adjustment to a different vocal tract size, there was a substantial increase in RT

[reaction time] on trials when the voice changed but the response did not.  Such increments

did not occur for voice differences such as pitch, even though these were perceptually

salient."

(pp. 261)

Based on their data, reaction time does seem to be a valid measure of the presence

(and extent) of normalization happening in a listener's mind.  Therefore, we should be

able to assess, based on a comparison of listeners' reaction times in identifying a 

vowel in a series of altered contexts, which elements of a context are most important 

to the normalization process.   

If the primacy hypothesis is accurate and normalization occurs based on the first 

token of a vowel that a listener is exposed to, listeners will more quickly identify a 

target vowel if the first instance of the vowel in the context is the same in quality.  

However, if the frequency hypothesis is accurate, and the method of normalization

relies on the frequency of occurrence of a given acoustic realization of a vowel in the 

context sentence, the listener should more quickly identify a vowel with a given 

acoustic quality if there were more vowels with that same quality than differing 

vowels in the sentence.  In addition, the listener should be quicker to respond as the 

frequency of vowels acoustically similar to the target vowel goes up.  

Any combined effect would manifest as an increased speed of identification when 

a listener is presented with a context where the altered vowels are both more frequent 

than unaltered vowels and are the first tokens encountered.  With both methods 

working in tandem and in agreement, one might expect reaction speed to be even 
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faster in such a situation than in situations where frequency or primacy alone are 

present. 

II – Methodology

2.1 – Recording speech samples for processing

Rather than attempting to sort through a large spoken corpus to find examples of 

vowel inconsistency, I chose to create inconsistency in recorded sentences using the 

source-filter resynthesis techniques found in the Praat phonetics software suite.  

Twelve speakers were recruited from within the University of Colorado 

Linguistics department.  These participants were all native speakers of American 

English, and the participants were not screened or selected for dialectal variations.

Once the procedure had been explained, the speaker was recorded in a sound-

attenuated area.  All recordings were captured directly to a hard drive, using a Shure 

head-worn microphone.  Speakers were asked to recite the following list of sentences 

twice:

Table 2.1: Stimulus Sentences

1. Steve saw the keys on the table, but the bee can't see me. 

2. Rita said that these slopes are easy for skiiers.  

3. Please don't upset the peace, we have plenty of crazies here.  

4. Peas are free next week, but John already has plenty. 

5. Geese slowly waddled between the neon lamps, resplendent for all to see.

6. Lisa sees twenty people a week.

7. Deep seas host many funny creatures.

8. Steve can't see the movie over the lady's antique hat.

9. Skee-ball leads to many beachfront tragedies.
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10. "Seeds can be very yummy", mused Ashley.

The word is beet. 

The word is bit.

I hear the beat. 

He's chomping at the bit.

These sentences were chosen because they (in canonical, GA English) each 

contain exactly five examples of our target vowel, the /i/ phoneme, and no examples 

of /!/ (outside of diphthongs).   In addition, the first words were chosen because they 

were stressed and because there was no confusable English word with /!/ in place of 

/i/ (e.g. 'Jean' and 'gin').  Sentences were broken into individual .wav files for future 

processing. 

Once all the speakers were recorded, two speakers were selected out, and their 

speech was marked for use only in filler sentences.   

2.2 – Stimulus Preparation

2.2.1 – Creating inconsistency using source-filter resynthesis

In order to gain useful information about our normalization process, very specific 

patterns of inconsistency must be created.  In this experiment, these patterns were 

created by altering the formant patterns of some tokens of the /i/ phoneme in the 

context sentences.  There are five patterns in which the /i/ tokens in the context 

sentence were altered, and these patterns are explained in the next section.

In order to create this controlled inconsistency in pronunciation (above and 

beyond any natural inconsistency), the source-filter resynthesis (SFR) features built 

into the Praat phonetics software were used to alter the formant structure of certain 

vowels.  To do this, first, the sentence was down-sampled to 11000hz, and the vowel 
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was removed from its sentence context.  Once it was alone, Praat's LPC function was 

used to generate an LPC object for the vowel, which was then inverse filtered with 

the original to isolate the pure voicing, and a filter (formant object) was created.  

Vowel tokens that were not altered were reanalyzed without changing their formant 

structures.  In this case, the source and filter were then combined, yielding a 

resynthesized vowel nearly identical in quality to the original.  If the vowel was to be 

altered, the frequencies of the isolated formants were modified as described below, 

using Praat's built in tool, and then the source and modified filter were combined, 

yielding a modified version of the original vowel.  Finally, the vowel was spliced 

back into the sentence in the exact location from whence it was removed.   For a 

precise description of the steps taken, please examine the annotated copy of the script 

used, which is included here as Appendix I.  

For the purposes of this experiment, the vowels were altered by lowering both F2 

and F3 by 300hz each.  This specific amount was chosen for several reasons.  First, 

300hz seems to be the largest alteration which can be performed without significantly 

affecting the perceived voice quality of the resynthesized version.  Beyond this point, 

the alteration becomes very obvious, and results in an intensely artificial sounding 

vowel.  Also, because the goal is to introduce some ambiguity between the /i/ and /!/ 

phonemes, this change creates an /i/ that is far closer to the /!/ phoneme for most 

English speakers.  Finally, this amount of variation could conceivably result from 

articulatory variation.  It's not unrealistic to think that periodically, a speaker might 

produce an /i/ with significantly lower F2 and F3 values due to mis-speech or due to 

an otherwise unusual articulation.  However, for a speaker to suddenly raise the F2 

and F3 of the /i/ phoneme, a point vowel, to this high of a degree would require the 

speaker to burst through the edges of their vowel space (if not their vocal tract), and 

would be a very unlikely sort of inconsistency.  

To make the finished stimuli sound more "natural" and eliminate some of the high 
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frequency "popping" associated with source-filter resynthesis, I implemented a pass-

merge step in the stimulus preparation.  During this step, the bottom 6000hz 

(0-6000hz) of the reanalyzed stimulus sentence are merged with the top 16,050hz  

(6000hz-22050hz) of the original sentence, resulting in a single, hybrid file which is 

then used as the final stimulus.  Because all of the relevant formants (F1, F2 and F3) 

are well below 6000hz, this doesn't affect the quality of the altered vowels, and very 

neatly removes or minimizes many of the high frequency pops and artifacts which 

could easily distract the listener.   For more detail, please see the attached annotated 

Praat script in Appendix I.

Post-hoc analysis revealed that because of the imperfect nature of Praat's formant-

finding and source-filter resynthesis process, in practice, the average formant heights 

are not moved precisely 300hz in every vowel.  In the final stimulus set, F2 was 

lowered by 264hz, on average, and F3 was lowered by 277hz, on average.   Although 

there were notable exceptions (see section 4.1.1), in this study, the resynthesis process

fairly consistently produced inconsistency. 

It is worth noting that vowel length was not altered in any way.  Although there is 

a vowel length contrast in American speech between /i/ and /!/ (Rositzke, 1939), 

eliminating this contrast would only serve to introduce another variable and another 

barrier to perception.  Even though this length contrast may provide some information

to speakers in the actual identification task, the nature of the experiment (in which 

identification accuracy is secondary to reaction time) makes this extra available 

information irrelevant to the study of the hypotheses.

2.2.2 – The nature of this inconsistency

As expected, even within the individual source sentences, speakers exhibited 

variation in formant structure from token to token of /i/.   Although F1, F2 and F3 

values for individual vowels generally stayed within a range of around 300hz from 
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the mean /i/ formant values in each sentence, there were some examples of variation 

up to 700hz from the mean.  This is not unexpected (and in fact, if such variation 

didn't occur, this study would be without purpose).

It's important, though, to point out that this variation will likely not interfere with 

or "cancel out" the alterations created above.  This study is not trying to contrast two 

specific acoustic vowels or formant patterns, but instead, to contrast the acoustic 

effects of two different vocal tracts or means of speaking.  By consistently changing 

the formant patterns of certain vowels, regardless of their starting values, this should 

set up a contrast between vowels with F2 and F3 at the speaker's natural baseline, and

vowels with an F2/F3 baseline around 300hz lower.  All of the variations present in 

normal articulation will still be there, but it will be, in many ways, as if the speaker is 

switching back and forth between two contrasting vocal tracts with slightly different 

patterns of resonance.  

In this way, natural variations in pronunciation will fade somewhat into the 

background, and the variation created artificially should be consistently contrastive, 

regardless of the specific nature of the vowels being modified.

2.2.3 – Patterns of Inconsistency

In order to test for specific patterns of normalization, the context sentences were 

altered in five different patterns of altered and unaltered (but reanalyzed) vowels in 

the context sentence.   All tokens of the /i/ vowel were resynthesized in some form, 

either with or without a vowel quality change.  Because the reanalysis alone does 

change the nature of the vowel slightly, and because the goal is to make vowel quality

the only contrast, reanalysis of all tokens eliminated any secondary contrast between 

reanalyzed and untouched tokens.  Throughout all of these patterns, only tokens of /i/ 

were modified or reanalyzed, with all other vowels left as the speaker pronounced 

them.   A total of 20 test stimuli were prepared, including four examples of all five 
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alteration patterns.

(Note that in the following pattern descriptions, "A" refers to an /i/ token where the 

formant structure has been altered, and "U" refers to an unaltered token.  The final 

vowel, always altered, is the target.)

Condition A: First token altered (AUUUU   A)

Condition B: Second token Altered (UAUUU  A)

Conditions A and B are designed to test the hypothesis that speakers normalize 

based on the first token that they hear (the primacy hypothesis).  Stimuli prepared to 

Condition A have only the first vowel and target vowels altered, and all others simply 

reanalyzed.  Condition B is designed to contrast with A solely based on primacy (as 

the frequency of occurrence of altered tokens is identical), and features an altered 

second vowel and target vowel.  

In analysis, if Condition A is faster than Condition B, the primacy hypothesis will 

be supported.

Condition C: Three altered (UAAAU   A)

Condition D: Two altered (UAUAU   A)

 

If frequency of occurrence is a key component of normalization, listeners should 

find it easier to identify a given acoustic vowel which matches the more commonly 

presented vowel.  Conditions C and D are designed to test whether this is, the case.  C

and D contrast solely based on frequency of altered token occurrence, where C as 3 

out of 5 tokens altered, and D has only 2 out of 5.  The first token has been left 

unaltered in both of these conditions to avoid interference from any primacy effect.

In analysis, if Condition C is faster than Condition D, the frequency hypothesis 
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will be supported, and comparison with other conditions will provide supplementary 

data.

Condition E: First and Frequent (AUUAA A)

Because Condition E has both a high frequency of occurrence (3/5) and an altered 

first token, it should be sensitive to both primacy effects and frequency of occurrence 

effects, and could serve as a secondary example of either, in case either effect is 

demonstrated.  However, more importantly, if both hypotheses show merit, Condition 

E will help to show whether or not there's any combined effect.  

In analysis, Condition E contrasts with both C and A.  If Condition E is faster than

both A and C, it will strongly support a combined effect.  

2.2.4 – Implementing these patterns

As an illustration of the implementation of each pattern, we'll examine the 

following stimulus sentence (transcribed broadly below):

Steve can't see the movie over the lady's antique hat.  Beet.

/ stiv kænt si "# muvi o$v%&  "# l'!diz æntik hæt.  bit /

If the sentence were used as a stimulus and prepared according to the conditions 

above, both F2 and F3 would be lowered by 300hz in the bold-italic vowels:

Condition A:

/ stiv kænt si "# muvi o$v%&  "# l'!diz æntik hæt.  bit /

Condition B:

/ stiv kænt si "# muvi o$v%&  "# l'!diz æntik hæt.  bit /

Condition C:

/ stiv kænt si "# muvi o$v%&  "# l'!diz æntik hæt.  bit /

Condition D:
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/ stiv kænt si "# muvi o$v%&  "# l'!diz æntik hæt.  bit /

Condition E:

     / stiv kænt si "# muvi o$v%&  "# l'!diz æntik hæt.  bit /

2.2.5 – The Stimulus Set

To increase the number of observations for each condition, each condition was 

tested a total of 4 times per listener, resulting in 20 test stimuli.  Because of the nature

of the experiment, the only target word is an altered 'beet', so, in the interest of 

maintaining listener attention and keeping the premise of this being a 'vowel 

identification' exercise, 20 'filler' stimuli were mixed in with the overall stimulus set.  

These filler sentences were prepared using the same conditions as the test stimuli, but 

instead of being followed by an altered 'beet', were followed by either an altered or 

unaltered 'bit' (ten altered, ten unaltered, distributed randomly).  Additionally, the 

presence of the fillers made the listeners feel that they had to attend to the stimuli in 

order to properly identify the vowels.  When filler and test stimuli are combined, the 

stimulus set is comprised of 40 sentences total.

2.2.6 – Ordering the stimuli

Because this experiment relies heavily on the novelty of a speaker's voice and 

vowel space, special considerations were taken to ensure that no biasing context was 

developed.  Three rules were observed when creating a psuedo-random order for the 

stimuli:

1) No one speaker may be used more than twice to create test stimuli

2) Two stimuli featuring the same speaker may not occur next to one another

3) No speaker may be used for filler before having been used for test stimuli

The first two rules were designed to prevent a listener from developing a strong 

memory of the voice or vowel space of a given speaker.  Given some degree of 

separation between the speaker's two stimuli (as well as the various other speakers in 
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the interim), it seems unlikely that any listener would remember the specifics of a 

speaker's voice across the two test instances.  

After a speaker has been used twice for test stimuli, that speaker's recordings can 

continue to provide filler stimuli without affecting the experiment.  For filler stimuli, 

it's not relevant whether or not the listener remembers the speaker's voice, as the data 

was not analyzed, regardless.  

Throughout this experiment, steps were taken to ensure that a listener didn't 

become familiar with the speaker's voice.  As such, no exposure to a given speaker's 

voice was squandered.  The stimulus ordering was designed to avoid using a still-

unfamiliar speaker as filler, establishing a possible context without good reason to do 

so.  The only exceptions to this were the two filler speakers, whose sentences were 

used only as filler.  

With a pool of 10 test speakers and two filler speakers, an ordered list of speakers 

and stimuli was created in such a way that all of these rules were met.  In practice, the

data was arranged in such a way that at least three stimuli featuring other speakers 

occurred between test stimuli featuring the same speaker.  See Appendix II for the 

final arrangement of speakers, alternations, and sentences in the 40 stimuli.  

2.3 – Procedure

2.3.1 – Experimental Design

The experiment itself was designed using PsyScope X, and was designed to use an

ioLab Response Box for user interaction and accurate response time measurement.  

The experiment script was made up of two sections.  First, in the practice and 

orientation section, the user was presented with a series of instructional screens (see 

Appendix III), explaining the task and orienting them to the use of the button box.  
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Once the orientation was complete, the listener then went through three practice trials 

(identical to the test trials described below). 

Stimuli for the practice trials came from consented speakers not included in the 

main stimulus set, and were selected to provide a good exposure to the approaching 

trials.  Conditions C, A, and B were chosen to give a good overview of the different 

sorts of alterations being made, and there were both "bit" and "beet" trials.  In 

addition, sentences 3, 4 and 9 were chosen because, in recording, speakers remarked 

that they found these sentences humorous, and hopefully, this will allow participants 

to get any laughing or giggling out of the way in the practice trials before reaction 

times were being measured.

Once the practice trials ended, a ready screen was called up, giving the listener a 

chance to pause before the test trials began, instructing them to press either button to 

begin the formal trials.  Once the listener opted to continue, a screen came up with 

"bit" and "beet", color coded and labeled according to their color and orientation on 

the button box, and the stimulus played through the listener's headphones.

Reaction timing was configured to begin at the start of the sound file, such that a 

response could be measured as soon as the listener felt that they could accurately 

respond (rather than forcing them to wait for a new screen).  In order to obtain 

accurate reaction times, the total time between the start of each file and the start of the

target vowel (defined here as the first pulse after the release of the /b/ closure) was 

measured.  Then, these numbers are simply subtracted from the total reaction times 

recorded by PsyScope to find the precise reaction time from the start of the vowel.

Once a response was registered, the listener was presented with another ready 

screen, as above, and the process was repeated for all 40 stimuli.
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2.3.2 – Listeners

Listeners for the experiment were paid undergraduate volunteers from the 

University of Colorado community, recruited through word of mouth as well as 

through posters around the CU Campus.  A total of 22 listeners participated in the 

experiment, over the course of three weeks.

  

During the scheduling and correspondence process, potential participants were 

questioned to make sure that they were native English speakers, had not had any 

formal training in audiology, phonetics or speech science, and had not been diagnosed

with any sort of hearing disorder.  These three criteria are relevant to eliminate people

who aren't familiar enough with the language to note the distinction, those who might 

have a honed sense of vowel perception due to past training, and those who might be 

physically unable to hear the contrast.   

2.3.3 – Carrying out the experiment

Once a listener was in the lab and had signed the relevant consent forms they were

seated in front of the computer.   The usage of the button box was demonstrated, and 

they were asked to choose a single method of button pushing (using thumbs, index 

fingers, etc) and then use it consistently throughout the experiment.  

Once they had been briefed, the listener ran through the experiment, as described 

above, with the stimuli played over Audio Technica ATH-M40fs headphones.  Once 

the listener finished and it was verified that data had indeed been collected, the 

listener was compensated, any questions were answered, and they were dismissed.  
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III – Analysis

3.1 – Analytical methodology and expected effects

In the 40 total trials, four examples of each condition were tested with each 

listener.  In order to allow a by-subject analysis, the reaction times for each condition 

were averaged for each listener.  This helps to compensate for individual aberrations 

within conditions, and allows the capability to conduct a series of paired t-Test 

analyses in order to gauge the significance of any findings.  

This series of t-Tests comparing the different conditions was the principal means 

of statistical analysis, and their results were used to support or reject the three 

hypotheses presented, as follows:

3.1.1 – Supporting the Primacy hypothesis

The primacy hypothesis states that we normalize solely based on the first token of 

a given vowel that we hear. 

 In order to support this hypothesis in its strongest form, the average reaction 

times between Condition A and Condition B will need to be compared.  If the average

reaction times for A (AUUUU A) are confirmed to be significantly greater than those 

of B (UAUUU A), then the first token hypothesis will be supported.   

In addition, for full support of the strongest form of this hypothesis, reaction times

for Condition E (AUAAA A) must be significantly faster than Condition C (UAAAU 

A), because those two also contrast solely based on primacy.  

3.1.2 – Supporting the Frequency hypothesis

The frequency hypothesis states that we normalize based on frequency of 

occurrence of differing vowel qualities, and therefore, we will recognize a more 

frequently occurring form more easily than one with lower frequency of occurrence.  

 

This hypothesis was examined by comparing the difference in reaction times 
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between C and D. If reaction times for Condition C are found to be significantly 

faster than those for Condition D, the Frequency Hypothesis was considered to be  

supported.

In addition, if frequency is the sole relevant effect, all of the Conditions should 

fall nicely into the following hierarchy of reaction speed, from fastest to slowest, 

based on the frequency of occurrence of altered vowels: 

Fastest

  Conditions C/E: 3 altered vowels

   Condition D: 2 altered vowels

   Condition A/B: 1 altered vowel

Slowest

3.1.3 – Supporting a combined effect

If both a frequency effect as well as a primacy effect manifest themselves in the 

data, both may simultaneously contribute to our understanding, and play a combined 

role in speaker normalization.

If any sort of combined effect is present, then Condition E (which has both 

primacy and a high frequency of occurrence) should be the easiest to process of any 

of the conditions.  If this is the case, t-Test analyses should show Condition E to be 

significantly faster than all other Conditions.

This outcome would suggest that these means of normalization are working in 

parallel, combining their outputs into our final capability to understand the speaker's 

voice.

3.2 – Data processing
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3.2.1 – Initial Data processing

Because response times were measured from the start of the sound file, actual 

response times had to be  determined by subtracting the length of the sentence before 

the start of the target vowel from the total measured reaction time.   After this step, all

filler sentences were separated out and excluded from further analysis.

Then, discretion was used to remove any data which seemed obviously unreliable.

The sole example of this was the exclusion of all data from participant six.  Upon 

analysis, she displayed exceptionally fast reaction times, most < 300ms, compared to 

an overall mean of 610ms.  In addition, she also made responses with some negative 

reaction times (where her response came before the target word).   She also had very 

low accuracy (85%) compared to all other speakers (who had more 99% accuracy 

overall).  Given that this participant had remarked at the time of the study that she had

"found the pattern" and claimed to be able to predict the target vowel based on the 

sentence, it was fairly clear that for many (if not all) of the trials, she was not actually 

performing a vowel identification task.  Based on all these factors, her data was 

deemed unreliable and excluded from the final analysis.

Then, in order to minimize the effects of outliers on my final data, the average of 

each participant's response times was taken, and any reaction times that were faster or

slower than two standard deviations from that average were thrown out.   This had the

effect of getting rid of obvious outliers (e.g, 2500ms response times when all others 

were in the 600ms-1000ms range), but generally removed only one or two data points

per speaker.   

Finally, in keeping with standard practice in reaction time data analysis, reaction 

time data from incorrect responses was thrown out.

A copy of the processed and unprocessed data used here is attached as Appendix 
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IV.

3.2.2 – Per-Subject Analysis

Once the data had been processed and prepared, the data was separated by listener

and condition.  Because some data had been tossed in the above steps, paired t-Tests 

were no longer possible comparing all four trials of each condition, so listener's 

responses to each condition were averaged together.  The end result was a table of 

average reaction times, arranged by listener:

Table 3.1: Sample per-listener-per-condition averages (in ms)

1 2 3 4 ... 21 22

A 589.67 752.33 640.00 623.75 ... 519.50 797.25

B 663.75 735.67 730.50 610.25 ... 519.25 882.50

C 646.25 834.50 697.00 496.50 ... 445.25 772.67

D 593.75 854.75 625.25 565.00 ... 399.75 642.75

E 604.75 702.75 700.00 595.00 ... 651.00 748.25

Once this table was compiled, a series of paired t-Tests was run on the data using 

the R Statistical Computing Environment.  t-Tests were performed comparing all 

averages of Condition A to all averages of Condition B, all averages of C to D, all of 

A to E, and all of C to E, and their results were compared.

3.3 – Findings

3.3.1 – Accuracy and overall means

Overall, response accuracy was extremely high.  In test stimuli, only four 

incorrect answers were given (out of 420 total test stimuli administered), yielding an 

accuracy rate higher than 99%.  Inaccurate responses did not occur more often with 

any particular condition, sentence, or speaker.
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The mean response time to all test stimuli was 631.1ms.

3.3.2 – Per-Subject means and t-Tests

The means of all per-listener-per-condition averages are shown in Table 3.2, 

below:

Table 3.2: Average response times for each condition (in ms)

A B C D E

630.5 640.6 622.1 613.3 647.1

Table 3.3: Paired t-Test results (df = 20 for all pairings)

Pairing A and B C and D A and E C and E D and E

Mean

Difference (in

ms)

-10.05 8.86 -16.61 -24.98 -33.84

p-value

(t-stat)

0.6245

(-0.4971)

0.6929

(0.4006)

0.5453

(-0.6153)

0.2503

(-1.184)

0.1747

(-1.402)

Although the means did obviously display some variation, t-Tests indicated that 

none of these variations were statistically significant.  

3.4 – Hypothesis discussion

3.4.1 – The Primacy Hypothesis

As stated above, in order for the primacy hypothesis to be supported, Condition A 

had to be faster than Condition B, and Condition E had to be faster than Condition C. 

The mean response time for A was, in fact, faster than B, by a 10ms margin.  

However, this varied greatly from speaker to speaker (see Appendix IV), and even 
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more importantly, a paired t-Test comparing the two yielded a p-value of 0.62.  In 

addition, means for Condition C were markedly faster than those for Condition E, 

with a p-value of 0.25.  

Finally, D is faster than E by a 33ms margin, with a p-value of 0.17.  This casts 

strong doubt on the strongest form of the Primacy hypothesis, because E (with an 

initial altered) should be faster than D if such a hypothesis holds.

Given that neither of the outlined criteria was statistically satisfied, the Primacy 

hypothesis is not supported in this data.

3.4.2 – The Frequency Hypothesis

Earlier, two criteria were stated which must be satisfied to support the Frequency 

Hypothesis.  The first stated that Condition C had to be faster than Condition D, and 

the second predicted the following distribution:

Fastest

  Conditions C/E: 3 altered vowels

   Condition D: 2 altered vowels

   Condition A/B: 1 altered vowel

Slowest

In the data, however, neither of these criteria were met.   Condition D was actually

slightly faster (~9ms) than Condition C (albeit without statistical significance), and 

once again, individual listeners varied greatly in their mean response times.  In 

addition, the per-condition reaction times did not follow the predicted distribution, 

and instead were arranged as follows:

Fastest
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  Condition D: 2 altered vowels (613ms)

  Condition C: 3 altered vowels (622ms)

  Condition A: 1 altered vowel (630ms)

  Condition B: 1 altered vowel (640ms)

  Condition E: 3 altered vowels (647ms)

Slowest

Finally, the fact that D is faster than E by a 33ms margin (with p = 0.17) casts 

strong doubt on the idea that frequency is the sole criterion for normalization.

Once again, neither of the criteria needed to support the Frequency hypothesis was

satisfied, and therefore, we have no choice but to consider the frequency hypothesis 

unsupported in this data.

3.4.3 – The Combined Hypothesis

Given that neither of the two component hypotheses were supported in this data, 

the combined hypothesis logically cannot be supported.  In addition, the fact that 

Condition E was the slowest measured condition means that all criteria put forth for 

supporting it were not met.  

IV – Potential sources of Error

As stated above, none of the initially proposed hypotheses were supported in the 

data collected, and even more importantly, the data was frustratingly inconsistent, 

leading to high p-values in all analyses.  I'd like to spend some time more closely 

examining the methodology and stimuli in an attempt to account for this variability, 

and to search out any sources of bias or confusion that may be masking any 

underlying results.

4.1 – Stimulus variability
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4.1.1 – Difficulties of Source-Filter Resynthesis in Experimental Methodology

As mentioned in section 2.2.1, because of the imperfect nature of the formant-

finding algorithms used, Source-Filter Resynthesis ('SFR') inherently produces varied

results.  Depending on factors such as speaker, context, and background noise, 

different vowels will be modified with more and less success.   This variation was one

of the primary suspects which arose when the data returned was fairly inconsistent.  

In an attempt to examine this variability, average formant measurements were taken  

for each vowel which was touched by the reanalysis script, both in the unmodified, 

raw test stimuli and in the resynthesized, prepared test stimuli.  

As previously mentioned, the average lowering of F2 and F3 in resynthesized, 

altered vowels was 268hz and 279hz, respectively.  This amount of change is very 

perceptible, and represents an acceptable amount of overall change.  Interestingly, 

though, simple reanalysis (SFR without specified formant change) occasionally 

caused a raise in formants, generally less than 200hz.  Although it should be taken as 

a cautionary sign about the variability of SFR, in this study, it is not a complicating 

factor as it would have only served to heighten the contrast between unaltered and 

altered vowels.

In general, most tokens were altered acceptably.  As an example, the average F2 

and F3 measurements before and after SFR for stimulus 16 are shown in Table 4.1 

below:

(See next page)

Table 4.1: An example of an acceptable SFR (Stimulus 16, Condition D, in hz)
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Vowel F2 before F3 before F2 after F3 after F2 drop F3 drop

/i/ 1 2223 2660 2228 2693 -5 -32

/i/ 2

*Altered*

2176 2859 1913 2601 264 258

/i/ 3 2166 2724 2230 2704 -65 19

/i/ 4

*Altered*

2407 2760 2150 2451 257 308

/i/ 5 2290 2768 2266 2747 24 21

Target /i/

*Altered*

2527 2833 2227 2512 300 321

However, there were several individual tokens whose formant patterns were badly

altered (or, in some cases, altered when they shouldn't have been).   For instance, take

the F2 and F3 measurements of stimulus 34, shown below in Table 4.2:

Table 4.2: An example of unacceptable SFR variability (Stimulus 34, Condition D, in 

hz)

Vowel F2 before F3 before F2 after F3 after F2 drop F3 drop

/i/ 1 2241 2911 2436 2991 -195 -80

/i/ 2

*Altered*

2026 2772 1826 2484 199 288

/i/ 3 2668 3198 2543 2950 125 248

/i/ 4

*Altered*

2399 2964 2419 3080 -20 -116

/i/ 5 2586 3074 2643 3187 -57 -113

Target /i/

*Altered*

2262 2999 2107 2715 155 284

This particular stimulus caused a fair amount of difficulty for Praat.  The second 

vowel was altered normally, but the fourth vowel was not lowered at all, and instead, 
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was raised by a small amount.  Interestingly, the third vowel (whose formant height 

should not have been changed at all) seems to have experienced a major formant 

drop.  In this particular case, the end result still has two out of five vowels altered.

However, there were other stimuli whose formant patterns were so mangled 

during the SFR process that they became questionable exemplars of their condition 

(Stimuli 12, 16, 18, and 37), either due to extremely weak alteration, or some vowels 

not altered where they should be.  Although the majority of stimuli prepared were 

acceptable, in less than 10% of stimuli, alterations may have lead to confusion.  

This post-hoc analysis of the stimulus set shows that although Source-Filter 

Resynthesis can be used to prepare stimuli effectively, those stimuli will necessarily 

vary, both in terms of degree of formant change and quality of formant change.

4.1.2 – Compensating for Source-Filter Resynthesis problems

As stated above, Stimuli 18 (E), 26 (D), 34 (D) and 37 (E) were all badly 

processed by Praat, and thus, may not have been good examples of their respective 

conditions.  

Interestingly, though, the mean reaction times for these stimuli did not seem to 

follow the hypotheses as we might expect.  For instance, Stimulus 37 (Condition E) 

was intended to have three altered vowels, but instead, only had two.  If a frequency 

effect were present, one might expect it to be the slowest of the Condition E stimuli, 

but instead, it was actually faster than another which had a well-altered formant 

structure. 

However, to avoid simple one-to-one comparisons and to better see whether data 

from these stimuli may be inappropriately skewing the data and masking results, the 

data for these stimuli was removed from the sample set (leaving only two examples 
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each of Condition D and E) and the statistical tests were run again:

Table 4.3: Average response times for each condition without faulty stimuli (in ms)

A B C D E

630.5 640.6 622.1 617 666.6

Table 4.4: Paired t-Test results without faulty stimuli  (df = 20 for all pairings)

Pairing A and B C and D A and E C and E D and E

Mean

Difference (in

ms)

-10.05 5.15 -36.07 -44.44 -49.5

p-value

(t-stat)

0.6245

(-0.4971)

0.8844

(0.1473)

0.4038

(-0.8529)

0.2369

(-1.2194)

0.059

(-2.0023)

When these (potentially) faulty stimuli are removed, p-values do drop, especially 

when comparing D and E.  However, the amount of total data (and thus, the 

significance) is lessened here because the per-listener-per-condition averages for both 

D and E are based here on half of the data that they previously were.  

4.2 – Per-item effects

4.2.1 – Problems arising from the use of a single stimulus set/order

Because of the complexity of arranging and creating stimuli (and due to the 

restricted timeframe in which work took place), a conscious decision was made early 

in this experiment to use only one set of stimuli ordered in one specific manner for all

trials.  

Although this was perhaps a necessary evil, this single order and single stimulus 

set could easily have compounded any variability between individual tokens.  

Although steps were taken to compensate for this through the careful arrangement of 
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stimuli, the use of multiple stimulus sets could have made the data collected more 

resistant to error and per-item bias.  

4.2.2 – Examining the possibility of per-item effects

In order to check for per-item effects a per-item analysis was performed on the 

test stimuli, examining the reaction times of each individual trial (sentence-target 

pair).  Although not necessarily significant to the analysis of the hypotheses, if there 

were to be a single trial that stood out either for an exceptionally fast or slow average 

reaction time, this would require further investigation and might have a bearing on the

final analysis and interpretation of the data.   

Examining the mean reaction times for the 20 test stimuli, they were found to be 

fairly closely clustered around the mean (631ms), with a standard deviation of only 

74ms.  (See Appendix IV for a complete listing of the item averages)

Only one stimulus fell outside of 2 standard deviations, Stimulus 2 (Condition B, 

with an average RT of 791ms).  Given that the formant values seem to have been 

properly processed by the SFR script, and the other stimuli with similar 

characteristics (speaker two, sentence two, condition B) did not exhibit similar slow 

RTs, this seems to be an anomaly rather than a representative of a more widespread 

pattern of frequency or primacy.

Overall, individual items did not seem to vary predictably, and this does not seem 

to be a likely source of confusion or bias. 

4.3 – Re-examination of the hypotheses

As discussed in the prior section, when viewed in hindsight, there are several 

factors which could have been better controlled in the initial setup and 

implementation of this experiment, and as discussed above, could all have in some 
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way led to a bias or confusion of the results.  Although some of these factors (like 

stimulus ordering or listener misunderstanding) cannot be compensated for, others 

can, like the most salient source of error, the varied output of the Source-Filter 

Resynthesis process.  

Fascinatingly, even once these factors are compensated for by removing 

questionable stimuli and performing a per-item analysis, there is still no support for 

either the frequency or primacy hypotheses. 

V – Discussion

The fact is that even when the data is reconsidered in light of potentially 

confusing and biasing factors, no patterns emerge which might seem to support these 

hypotheses.   Response accuracy suggests that despite the measures taken here to 

confuse normalization (far beyond those which might occur in everyday language 

situations), listeners had little difficulty with the task.  Although the statistical power 

is not sufficient to completely rule out any effect of frequency of use and primacy, 

based on both initial and post-hoc analysis of the data, the evidence seems to be 

against either primacy nor frequency of vowels in context sentences having a strong 

effect.

Based on the results of this study, the sole reasonable choice is to reject the both 

the Frequency and Primacy hypotheses, and by association, the combined hypothesis. 

In this section, the implications of this result will be discussed, in terms of differing 

theories of speaker normalization, as well as in terms of their suggestions for future 

studies.

5.1 – Theoretical Implications for Algorithmic Models
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5.1.1 – Inherent assumptions of this methodology

The assumption throughout this experiment (and indeed, throughout much 

research in speaker normalization) is that our normalization mechanism consists of an

algorithm (generally coupled with a model that it creates).  When a listener first meets

a speaker, the assumption has been that the listener sends an initial portion of the 

speaker's speech through some sort of algorithm.  This algorithm takes this initial 

speech sample ('context') and uses it to create a model of the speaker's voice, which 

can later be referred to in order to interpret variations in speech.  

The goal of this experiment has been to make the listener create an inaccurate, 

altered model by providing altered vowels as a part of this context.  These varying 

altered models would lead to an increased (or decreased) difficulty when the listener 

is asked to identify a vowel which is ambiguous in context.  This difficulty would 

then map to increased reaction time, which could be used to measure the effects of 

varying contexts.  

None of the theoretical assumptions made thus far are particularly controversial.  

Algorithm-and-model theories of normalization are far from uncommon, and 

Ladefoged and Broadbent (1957) have neatly shown that we do judge vowels from an

unfamiliar speaker using information from prior context.  In addition, measuring 

normalization difficulty using reaction time is a well supported methodology (see 

Haggard and Summerfield 1977).  All of these assumptions have stood the test of 

time, and therefore, seem unlikely to be the source of this study's lack of results. 

5.1.2 – Normalization independence of phonemes

However, there is one assumption made in this methodology that is somewhat 

more controversial.  Because, in this study, all alterations in context are occurring in 

only one vowel, /i/, we must assume that we normalize to each vowel phoneme 

independently, and that each vowel only provides a listener with information about 
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itself.  In practice, this means that if a listener hears the only sentence "he sees three 

cats" from an unfamiliar speaker, the listener will be able to get a very good idea of 

the nature of the speaker's /i/ phoneme (having heard it three times), and will have 

some idea of the nature of the speaker's /æ/ phoneme.  However, the listener will have

no information about the remainder of the speaker's vowel space, and, for instance, 

would still have to develop a model for the speaker's /u/ and /(/ phonemes later in the 

conversation.    

If the algorithm does process each vowel independently, then one would expect 

that altered /i/ phonemes in a context might make recognition of later altered /i/ 

phonemes easier, no matter what other vowels were present in the remainder of the 

context.  However, in this study, difficulty (as measured by relative RTs) did not 

change significantly with any alterations of context, no matter their nature or severity.

If we continue to assume that we normalize to vowels independently of one 

another, this result is somewhat baffling.  However, if we're willing to acknowledge 

the possibility that acoustic information from one vowel phoneme can provide 

information which helps us normalize to another vowel phoneme (interdependent 

vowel normalization), these results make a great deal more sense.

In sentence eight ("Steve can't see the movie over the lady's antique hat."), there 

are a total of thirteen vowels, five of which are /i/.  In this study, when testing the 

frequency hypothesis, three of those five /i/ tokens were altered.  That was considered

to be a high frequency of occurrence, which it was, if only /i/ vowels are relevant to 

normalization.  However, if all vowels in the context sentence were used to refine our 

model of a speaker's /i/ vowel, then the true frequency of altered vowels was only 3 

out of 13, less than 25% of all vowels.  This effect is even greater in sentence five, 

which has eighteen total vowels.  There, the "high frequency of occurrence" of altered

vowels condition only alters around 16% of all vowels.
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Above and beyond vowel independence, if we allow for the possibility that non-

vocalic sounds provide information used in normalization (see Whalen and Sheffert 

1997), the number of unmodified segments useful for normalization goes up 

significantly, and the numbers of alterations made here are seen to be pitifully small 

compared to the useful, unaltered phonemes in the larger context.

5.1.3 – Implications

What do these results really mean for an algorithm-based theory of 

normalization?   The lack  of statistically significant results could tell us several 

fundamentally different stories.

The extremely high accuracy of identification despite large degrees of change 

tells us that if vowels normalize independently, whatever normalization algorithm is 

used must be extremely resilient and capable of dealing with large variations in vowel

quality even with unreliable data.  At the same time, this lack of results still seems to 

strongly indicate that neither frequency nor primacy play strong role in this process, 

and that some unknown method of normalization is used which was not affected by 

the alterations made here.

If we maintain the existence of an independent model of vowel normalization, in 

order to explain the lack of results, we have to posit an extraordinarily resilient model

which is able to effortlessly overcome the alterations in the /i/ vowels.  However, an 

interdependent model of vowel normalization would seem to explain the findings in a

far more intuitive way.

As mentioned above, if other vowels are actually useful and relevant for the 

normalization of individual vowel phonemes, then the Condition C and E (high 

frequency of occurrence) stimuli actually demonstrated a very low ratio of altered 
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vowels to unaltered ones.  When viewed in the light of interdependent vowel 

normalization, the results were exactly as would be expected.  Listeners paid to the 

most common (unaltered) vowels, and threw out the infrequent (altered) ones.  Also, 

because the total ratio of altered to unaltered vowels is so low, it's unlikely that the 

small changes in normalization difficulty would show up in the data strongly enough 

to be meaningful.  Because there were no stimuli where altered vowels outnumbered 

the unaltered vowels, this stimulus set is inadequate for making any determinations 

about the role of frequency in an algorithm which allows interdependent vowel 

normalization.  Therefore, this data does not completely rule out a role for frequency 

of occurrence in an algorithmic model of speaker normalization.

However, even in the case of interdependent vowel normalization, the primacy 

hypothesis is unsupported by this data.  Because no other vowels occurred before the 

initial modified /i/ tokens in the Condition A and E stimuli, the modified initial /i/ 

should have still skewed the listener's model, if it were based solely on the first vowel

observed and disregarded future information.  Unlike the frequency hypothesis, if the 

data in this study is, in fact, accurate, then the primacy hypothesis is unsupported, no 

matter which particular characteristics one attributes to the algorithm used for 

normalization.

Although, due to the nature of the study and stimulus set, there was no strong 

evidence of variable reaction time delay due to increased or decreased difficulty in 

speaker normalization, this theoretical ambiguity means that the lack of significant 

results should not be interpreted as a strike against algorithm-based normalization in 

general.   Similarly, although the data here did not support the frequency hypothesis, 

the uncertainty regarding the independent and interdependent nature of vowel 

normalization prevents us from dismissing it outright.

5.2 – Implications for an exemplar-based normalization process
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Although this study was designed to test hypotheses stemming from an 

algorithmic model of normalization, these results (or lack thereof) should also be 

examined in light of the strongest competing category of theories, the exemplar-based

models of speaker normalization.  

In an exemplar-based model of normalization, instead of context being used only 

to build an abstract model (and then being discarded), we are assumed to keep 

information about specific instances of sounds and words in our memory.  Once this 

database (sometimes referred to as an "exemplar cloud" or "episodic lexicon" 

(Goldinger, 1997)) has been established, new sounds are compared to previously 

recorded tokens, and through this comparison, phoneme (or word) identification is 

made.  

5.2.1– Validity of the hypotheses in an exemplar-based model

Perhaps the most salient question is whether these hypotheses could possibly be 

valid with or applied to an exemplar-based model of normalization.  

In order for even the barest semblance of an exemplar based theory to apply, 

multiple tokens need to be stored and considered in future normalization tasks.  The 

primacy hypothesis states explicitly that only the first token is considered in 

normalization, and therefore, could not co-exist with an exemplar-based model.

However, the frequency hypothesis does seem like it could be relevant for 

exemplar-based model as well.  In an algorithmic model, frequency of occurrence 

effects might well take the form of a "running average" sort of calculation, where 

individual tokens are processed, the model is adjusted to account for the variation, 

and the actual token is forgotten.  In an exemplar-based model, a frequency effect 

would instead come from the relative frequency of a given vowel quality in the 

episodic lexicon of the listener.
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For instance, if a listener is presented with a vowel in an ambiguous context, he 

or she would immediately begin searching through prior tokens to find a match.  If a 

matching (or very similar) vowel quality occurred five times in an /i/ context and 

once in an /!/ context, one might expect the /i/ match to be weighted more heavily, 

and thus, be the more natural choice for interpreting the vowel.  

So, although the functional nature of a frequency of occurrence effect could 

easily vary between an algorithmic model and an exemplar-based model, we can see 

that the frequency hypothesis could theoretically be valid with either model.

5.2.2– Interpretation of results in an exemplar-based model

Because of the inherent contradiction between the primacy hypothesis and an 

exemplar-based model, the lack of support for the primacy hypothesis would be 

considered obvious (and in fact, support for it would cast doubt on an exemplar 

theory in general).  

Interestingly, although frequency of occurrence effects are likely a factor in any 

weighting scheme, the lack of significant difference based on frequency is easily 

explicable by even a very basic exemplar-based theory of normalization.  

One basic implementation of exemplar-based normalization would include only 

simple matching.  If a vowel quality has occurred in a known context, it is tagged as 

an exemplar of the phoneme it represented, and future matching instances of that 

vowel quality are instantly associated with that phoneme.  In this situation, multiple 

acoustic variations which occurred in the same context might still be tagged as being 

exemplars of the same phoneme.  So long as a single variation didn't show up in the 

context of two different phonemes, the question of which variation is more frequent 
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doesn't even arise when it's presented in an ambiguous context.  In this situation, a 

match is a match, and frequency is irrelevant.  So, in reality, matching the varied 

forms would be no more difficult than matching the canonical ones.  

Because the context sentences in this study were purposefully designed to not 

include words that were lexically ambiguous between /i/ and /!/, there are no 

situations where altered /i/ tokens occur in a possible /!/ context.  Therefore, the 

situation would be as described above, and identifying the target vowel would be a 

simple question of matching the acoustic properties of the target vowel to those of 

past tokens.  

In every stimulus, regardless of the sentence or condition applied, both altered 

and unaltered /i/'s occurred in /i/ contexts (and only in /i/ contexts).  Therefore, 

normalization (if done using an exemplar-based method) would be a simple question 

of matching.   Thus, the identification process would be no more or less difficult for 

any given stimulus.  

5.2.3– Implications of results on an exemplar-based model of speaker 

normalization

So, even though an exemplar-based model might well display some degree of 

frequency effect, because of the lack of contextual ambiguity discussed above, the 

stimuli presented here wouldn't be expected to trigger it.  Therefore, in light of an 

exemplar based model, the lack of demonstrable effect produced by the conditions in 

this study are not only explicable, but to be expected.   Although the lack of results 

could potentially be seen as reflecting our existing understanding of exemplar-based 

speaker normalization, there is, unfortunately, little here to expand our understanding 

of such a model.
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VI – Future Studies

Although this particular study yielded no significant results, it did produce a 

wealth of practical data and insight into what questions should be addressed in future 

studies, and what methodologies should be used (and avoided) to address them.  

6.1 – Future methodological changes

In this study, the biggest source of methodological problems was the use of 

Source-Filter Resynthesis in stimulus preparation.  Although its use should not be 

avoided completely, in the future, its output would have to be far more closely 

monitored, and more precise means of controlling Praat's formant height adjustments 

would have to be found.  

However, there may be advantages to performing future experiments using 

computer voice and vowel synthesis to create stimuli.  In this way, the stimuli could 

be controlled with far greater precision, and there would be little stimulus variability 

which was not designed.  Of course, further trials and research would be necessary to 

evaluate the feasibility of the process, to see how listeners respond to non-human 

voices, and to see if there may be other unintended effects.

Finally, in an effort to counteract per-item effects, trials of future experiments 

would almost certainly use more speakers, and therefore, more than one distinct 

stimulus set and ordering.  This would filter out per-stimulus effects far more 

effectively than post-hoc analysis, and ideally, provide more reliable data for future 

analyses.
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6.2 – Future questions and studies

6.2.1 – Testing the effects of context quantity

To confirm the basic assumption that more context increases ease of 

normalization, a study should likely be performed to measure the effects of context of

different lengths on normalization speed.  Such a study would likely take the form of 

a similar context/identification task pairing, where each context is unaltered, but has a

different number of total vowels, ranging from one or two vowels to as many as 

twenty.  

In this way, the difference in reaction times could be compared between trails 

preceded by more or less context, and the underlying assumption that more context 

improves ease of normalization could be tested.  If reaction times are fastest 

following the most context, and slowest when little context is present, this assumption

is well supported.

6.2.2 – Testing the frequency hypothesis assuming interdependent vowel 

normalization

Because the frequency hypothesis wasn't adequately tested in this study if vowel 

normalization does not occur for each phoneme independently, a followup study 

should be performed to further investigate and clarify its role.  This study would 

likely use a similar methodology, but include modification to all vowels in the 

context, rather than just to tokens of /i/.  Ideally, each of these alterations would cause

a slight distortion to the listener's model of the speaker's vowel space, which would 

make it more difficult for them to identify an accurate, unaltered vowel in a simple 

identification task.

In such a study, a similar series of trials could be run testing the effect of different

frequencies of occurrence of altered vowels (one vowel, 1/4 of all vowels, 1/2 of all, 

3/4 of all, and all vowels), when coupled with an unaltered target vowel.  If, as the 
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overall frequency of alteration goes up, listeners are slower to identify an unaltered 

vowel, the frequency hypothesis would be unambiguously supported, and our 

understanding of the role of all vowels in single vowel normalization would be 

greatly clarified.

6.2.3 – Testing for a frequency of occurrence effect assuming an exemplar-based 

model of normalization

The stimuli prepared for this study were, by their very nature, completely 

incapable of triggering any frequency effect that might be at work in an exemplar-

based model of speaker normalization.  In order to effectively test for such an effect, a

different sentence set and stimulus preparation method could be used in conjunction 

with the existing methodology used here.  

The very nature of an exemplar-based model suggests that we normalize to each 

vowel based on prior instances of that vowel (and not based on other vowels).  

Therefore, we could safely set aside the question of independent versus 

interdependent normalization and work only with tokens of a particular vowels.

However, unlike in this study, each context sentence would have to contain a 

measured number of unambiguous instances of /i/ (likely more than just five, as 

exemplar theories thrive on data), and in addition, an equal number of contexts where 

only /!/ fits.  Then, in the modification process for each stimulus, a vowel of 

intermediate, set quality could be substituted for a certain number of the /i/ phonemes,

for a lesser or greater number of the /!/ vowels, and for the target word of the 

identification task.  This way, an ambiguity is created, as the target vowel will match 

a prior examples of both /i/ and /!/ phonemes.  

Ideally, by adjusting the ratio of intermediate vowels in /i/ contexts versus /!/ 

contexts, the listener's set of exemplar data could be weighted in such a way that the 
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intermediate target vowel would seem more likely to be /i/, or more likely to be /!/.   

One might expect that a context sentence with a high number of intermediate /i/ 

vowels and low number of intermediate /!/'s would trigger the listener to identify the 

contextually ambiguous target vowel as /i/, and vice versa.

If such an effect is present and statistically significant, then it very strongly 

suggests that a frequency/weighting effect is present in exemplar-based models of 

normalization, neatly supporting the frequency hypothesis proposed here, albeit in a 

different theoretical context.

VII – Summary and Conclusions

This study was designed to gain insight into the process by which humans are 

able to adjust to and understand the speech of unfamiliar speakers, referred to a 

"speaker normalization".   Prior research has suggested that, in order for 

normalization to occur, a listener has to have some speech data ("context") to process.

The goal of this study was to further elucidate the role of this context, by examining 

precisely what parts of the context are necessary for vowel space normalization, and 

how that context is processed to allow listeners to accurately interpret an unfamiliar 

speaker's speech.

During the course of this study, two hypotheses were tested.  The first hypothesis 

(the primacy hypothesis) stated that listeners will normalize based on the first vowel 

token to which they're exposed, and the second (the frequency hypothesis) stated that 

in the presence of variability, listeners will consider the more frequently occurring 

vowel quality to be the default, canonical quality, and will identify future tokens 

accordingly.  In addition, data was collected to check for the presence of any 

combined effect from both hypotheses together.
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These hypotheses were tested by altering (using source-filter resynthesis) a series 

of recorded stimuli in five specific patterns and presenting them to listeners in a 

timed, forced-choice vowel identification task.  Two of these patterns contrasted to 

test for primacy, the first with an altered first vowel, the other featuring an altered 

second vowel.  Two contrasted to test for frequency, featuring three vowels altered 

out of five total, and and two vowels altered, respectively.   Finally, one was designed 

to test for a combined effect, as it included both three altered vowels and an altered 

first token.  

Per-listener average reaction times for each different alteration pattern were then 

compared to test the validity of the hypotheses.  This comparison yielded no 

statistically significant differences between the different preparations which were 

designed to elicit frequency and primacy effects, and even after extensive post-hoc 

analysis of sources of error, neither hypothesis was found to be supported by the data.

Although a role for primacy and frequency of occurrence in speaker 

normalization was unsupported by the data, the statistical power was insufficient to 

completely rule out either.   However, the lack of strong primacy and frequency 

effects in this study raised several interesting theoretical questions, both for 

algorithmic and for exemplar-based models of speaker normalization, and suggests a 

variety of future avenues of exploration in the field of speaker normalization research.

These theoretical questions, combined with the lessons learned in the process of 

carrying out this experiment, pave the way for a variety of future research into the 

role of context in speaker normalization, and hopefully, for a better understanding of 

this fascinating process.
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Appendix I: Stimulus Alteration Script

################################################
##            Will Styler's Vowel Skewing script
##

## This script is designed to work with a sound/textgrid pair
## which contains five marked vowels, each marked with "i".
## However, as long as all vowels that you'd like skewed are
## marked with "i" on the Textgrid, Conditions A and B will 
## work wonderfully, as will "All Altered" and "All Unaltered".  The target 
vowel must be marked with 'T'.  Select the sound, then run.
##

## Written in Fall 2007 based on scripts by (and with           
## assistance from) Rebecca Scarborough.  Cannibalize           
## this script and the methods herein as you wish.             
################################################

# Present the user with a form to choose which stimulus preparation to use.
form Select your Stimulus Alteration
   comment Select your Alteration
        choice Cond: 1
        button Alteration A: First (AUUUU A)

button Alteration B: Second (UAUUU A)
        button Alteration C: High Freq (UAAAU A)
        button Alteration D: Low Freq (UAUAU A)
        button Alteration E: First freq (AUUAA A)

button All Altered (AAAAA A)
button All Unaltered (UUUUU A)

# This simply allows the user to choose which of the alteration patterns 
(conditions) to apply to the stimulus
   comment Skew the Target?
        choice tar: 1
        button Yes

button No
# This allows the user to choose whether to skew the target
   comment Bandpass and remerge?
        choice pass: 1
        button Yes
        button No
# This allows a choice as to whether or not to bandpass and remerge.
   comment Pass Boundary?

integer passnum 6000
# This sets the boundary between the pure and the skewed if a bandpass step 
is included
    comment Find how many formants?

integer formnum 5
# Having Praat find more formants can be good for certain speakers, but isn't
often necessary
endform

if tar = 1
tar$ = "Y"

endif
if tar = 2

tar$ = "N"
endif

# Get the selected file
sn$ = selected$ ("Sound")

# Here, I've turned the vowel-skewing per se into a procedure to keep the 
code cleaner later
procedure Skew_Vowels

# Resampling really improves the LPC quality
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Resample... 11025 50
Rename...  'sn$'_origdown
# First, we create the LPC (for voicing isolation) and the formant 

(for tweaking)
To LPC (burg)...     12 0.025 0.005 50
select LPC 'sn$'_origdown
Rename...  'sn$'_LPC
select Sound 'sn$'_origdown
To Formant (burg)... 0 formnum 5500 0.025 50
# Then, we isolate the voicing
select LPC 'sn$'_LPC
select Sound 'sn$'_origdown
plus LPC 'sn$'_LPC
Filter (inverse)
Rename...  'sn$'_Voicing
# The LPC object isn't needed anymore
select LPC 'sn$'_LPC
Remove
# Rename the formant, then tweak it such that F2 and F3 are lowered 

by 300hz
select Formant 'sn$'_origdown
Copy...  'sn$'_distorted300
Formula (frequencies)...  if row = 2 then self - 50 else self fi
Formula (frequencies)...  if row = 2 then self - 50 else self fi
Formula (frequencies)...  if row = 2 then self - 50 else self fi
Formula (frequencies)...  if row = 2 then self - 50 else self fi
Formula (frequencies)...  if row = 2 then self - 50 else self fi
Formula (frequencies)...  if row = 2 then self - 50 else self fi
Formula (frequencies)...  if row = 3 then self - 50 else self fi
Formula (frequencies)...  if row = 3 then self - 50 else self fi
Formula (frequencies)...  if row = 3 then self - 50 else self fi
Formula (frequencies)...  if row = 3 then self - 50 else self fi
Formula (frequencies)...  if row = 3 then self - 50 else self fi
Formula (frequencies)...  if row = 3 then self - 50 else self fi
# Create the skewed version
select Formant 'sn$'_distorted300
plus Sound 'sn$'_Voicing
Filter
Rename...  'sn$'_Skewed-300
# Match the intensity of the original by getting the intensity 

(called 'dudeintense' here) and scaling the skewed to the same level
select Sound 'sn$'
dudeintense = Get intensity (dB)
select Sound 'sn$'_Skewed-300
Copy...  'sn$'_skewedvowel
Scale intensity... dudeintense
# Resample the skewed vowel to 44100 such that it can be copypasted 

into the original file
Resample... 44100 50
select Sound 'sn$'_skewedvowel
Remove
# Rename the 44100 version as sound_skewedvowel and clean up the files

used in the process
select Sound 'sn$'_skewedvowel_44100
Rename... 'sn$'_skewedvowel
select Formant 'sn$'_origdown
Remove
select Formant 'sn$'_distorted300
Remove
select Sound 'sn$'_Skewed-300
Remove
select Sound 'sn$'_origdown
Remove
select Sound 'sn$'_Voicing
Remove
select Sound 'sn$'_temp
Remove
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endproc

# This procedure is identical to Skew_Vowels, except that the formant isn't 
actually tweaked.  This is used to produce a pure-yet-reanalyzed vowel
procedure Reanalyze

# Resampling really improves the LPC quality
Resample... 11025 50
Rename...  'sn$'_origdown
# First, we create the LPC (for voicing isolation) and the formant 

(for tweaking)
To LPC (burg)...     12 0.025 0.005 50
select LPC 'sn$'_origdown
Rename...  'sn$'_LPC
select Sound 'sn$'_origdown
To Formant (burg)... 0 formnum 5500 0.025 50
# Then, we isolate the voicing
select LPC 'sn$'_LPC
select Sound 'sn$'_origdown
plus LPC 'sn$'_LPC
Filter (inverse)
Rename...  'sn$'_Voicing
# The LPC object isn't needed anymore
select LPC 'sn$'_LPC
Remove
# Rename the formant
select Formant 'sn$'_origdown
Copy...  'sn$'_distorted300
select Formant 'sn$'_distorted300
plus Sound 'sn$'_Voicing
Filter
Rename...  'sn$'_Skewed-300
# Match the intensity of the original by getting the intensity 

(called 'dudeintense' here) and scaling the skewed to the same level
select Sound 'sn$'
dudeintense = Get intensity (dB)
select Sound 'sn$'_Skewed-300
Copy...  'sn$'_skewedvowel
Scale intensity... dudeintense
# Resample the skewed vowel to 44100 such that it can be copypasted 

into the original file
Resample... 44100 50
select Sound 'sn$'_skewedvowel
Remove
# Rename the 44100 version as sound_skewedvowel and clean up the files

used in the process (Yes, it's not skewed here, but it's easier to leave 
everything 

# named as skewed for later procedures)
select Sound 'sn$'_skewedvowel_44100
Rename... 'sn$'_skewedvowel
select Formant 'sn$'_origdown
Remove
select Formant 'sn$'_distorted300
Remove
select Sound 'sn$'_Skewed-300
Remove
select Sound 'sn$'_origdown
Remove
select Sound 'sn$'_Voicing
Remove
select Sound 'sn$'_temp
Remove

endproc

# This procedure does the dirty work of actually cutting the pure, copying 
the skewed and pasting it in the pure's place
procedure Replace_With_Skewed
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# Select the pure sound (which has already been renamed _tweaked by 
this time in the for-loop)

select Sound 'sn$'_tweaked
Edit
# Use the editor window to select between the start and end 

times of the interval, then cut it out (removing it)
editor Sound 'sn$'_tweaked

Select... vstart vend
Cut
Close

endeditor
# Open the previously created skewed vowel file, then copy the 

exact interval to the clipboard
select Sound 'sn$'_skewedvowel
Edit
editor Sound 'sn$'_skewedvowel

Select... vstart vend
Copy selection to Sound clipboard
Close

endeditor
# Reopen the pure sentence, move the cursor to the interval 

start, and paste in the skewed vowel
select Sound 'sn$'_tweaked
Edit
editor Sound 'sn$'_tweaked

Move cursor to... vstart
Paste after selection
Close

endeditor
endproc 

# This  Procedure merges the bottom 5000hz of the altered file with the 5000+
of the unaltered file.  It will work even if the skewing results in minor 
changes in duration.
procedure Passcombine

# First, we measure the duration of both sounds
select Sound 'sn$'_tweaked
tweakdur = Get total duration
select Sound 'sn$'
Copy... 'sn$'_pure
puredur = Get total duration
if tweakdur > puredur

durdi! = tweakdur - puredur
select Sound 'sn$'_pure
Edit
editor Sound 'sn$'_pure

Select... 0 durdi!
Copy selection to Sound clipboard
Move cursor to... 0
Paste after selection

endeditor
endif
if tweakdur < puredur

durdi!t = puredur - tweakdur
select Sound 'sn$'_tweaked
Edit
editor Sound 'sn$'_tweaked

Select... 0 durdi!t
Copy selection to Sound clipboard
Move cursor to... 0
Paste after selection

endeditor
endif
# Select the tweaked sound and filter out everything above 5000hz 

(although here, it's controlled by the variable 'passnum', set to 5000 
elsewhere

select Sound 'sn$'_tweaked
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Filter (pass Hann band)... 0 passnum 1
Rename... 'sn$'_lo
# Filter out everything below 5000hz in the pure file
select Sound 'sn$'_pure
Filter (stop Hann band)... 0 passnum 1
Rename... 'sn$'_hi
# clean up the old "tweaked" file to avoid ambiguity
select Sound 'sn$'_tweaked
Remove
# Select the highs from the pure and the tweaked lows and combine 

them to stereo, in e!ect, merging the files
select Sound 'sn$'_hi
plus Sound 'sn$'_lo
Combine to stereo
# Put it back to Mono so the two combined are just one mono sound
Convert to mono
# Renamed the merged file, and do some cleanup
Rename... 'sn$'_tweaked
select Sound 'sn$'_hi
plus Sound 'sn$'_lo
plus Sound 'sn$'_lo_'sn$'_hi
plus Sound 'sn$'_pure
Remove

endproc

# Now, we actually start the work of the script using the above procedures

# Start Textgrid work
select Sound 'sn$'
# Copy the sound to _tweaked as to not overwrite the original
Copy... 'sn$'_tweaked
select TextGrid 'sn$'
numint = Get number of intervals... 1

# Check to see which condition is requested, and then carry it out

if cond = 1
select TextGrid 'sn$'
label$ = Get label of interval... 1 2
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 2
vend = Get end point... 1 2
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif

for i from 1 to numint
select TextGrid 'sn$'
label$ = Get label of interval... 1 'i'
# Check to see if the interval has a vowel
if label$ = "i"

if i <> 2
vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
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# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif
if label$ = "T"

if tar = 1
vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

endfor
if pass = 1

call Passcombine
endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_CondA_'tar$'

endif

if cond = 2
select TextGrid 'sn$'
label$ = Get label of interval... 1 4
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 4
vend = Get end point... 1 4
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif

for i from 1 to numint
select TextGrid 'sn$'
label$ = Get label of interval... 1 'i'
# Check to see if the interval has a vowel
if label$ = "i"

if i <> 4
vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
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Extract part... vstart-0.25 vend+0.25 Hanning 1 
yes

Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif
if label$ = "T"

if tar = 1
vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

endfor
if pass = 1

call Passcombine
endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_CondB_'tar$'

endif

# These final conditions are hackish.  Sadly, I have to just specify which 
intervals are to be skewed.
# So, rather than saying "the 1st, 3rd, and 5th", I have to say "interval 2,
6 and 10"
# However, when provided with a 5-skewed-vowel input, this hackish method 
works like a charm

if cond = 3
select TextGrid 'sn$'
label$ = Get label of interval... 1 4
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 4
vend = Get end point... 1 4
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
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select Sound 'sn$'_skewedvowel
Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 6
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 6
vend = Get end point... 1 6
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 8
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 8
vend = Get end point... 1 8
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 2
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 2
vend = Get end point... 1 2
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 10
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 10
vend = Get end point... 1 10
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 12
if label$ = "T"

if tar = 1
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vstart = Get starting point... 1 12
vend = Get end point... 1 12
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 12
vend = Get end point... 1 12
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

if pass = 1
call Passcombine

endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_CondC_'tar$'

endif

if cond = 4
select TextGrid 'sn$'
label$ = Get label of interval... 1 2
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 2
vend = Get end point... 1 2
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 6
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 6
vend = Get end point... 1 6
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 10
# Check to see if the interval has a vowel
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if label$ = "i"
vstart = Get starting point... 1 10
vend = Get end point... 1 10
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 4
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 4
vend = Get end point... 1 4
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 8
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 8
vend = Get end point... 1 8
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 12
if label$ = "T"

if tar = 1
vstart = Get starting point... 1 12
vend = Get end point... 1 12
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 12
vend = Get end point... 1 12
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
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# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

if pass = 1
call Passcombine

endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_CondD_'tar$'

endif

if cond = 5
select TextGrid 'sn$'
label$ = Get label of interval... 1 2
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 2
vend = Get end point... 1 2
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 8
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 8
vend = Get end point... 1 8
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 10
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 10
vend = Get end point... 1 10
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 4
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 4
vend = Get end point... 1 4
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
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call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
select TextGrid 'sn$'
label$ = Get label of interval... 1 6
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 6
vend = Get end point... 1 6
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif

select TextGrid 'sn$'
label$ = Get label of interval... 1 12
if label$ = "T"

if tar = 1
vstart = Get starting point... 1 12
vend = Get end point... 1 12
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 12
vend = Get end point... 1 12
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

if pass = 1
call Passcombine

endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_CondE_'tar$'
select Sound 'sn$'_CondE_'tar$'

endif

if cond = 6
for i from 1 to numint

select TextGrid 'sn$'
label$ = Get label of interval... 1 'i'
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
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select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel

Remove
endif
if label$ = "T"

if tar = 1
vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

endfor
if pass = 1

call Passcombine
endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_AllAlt_'tar$'

endif

if cond = 7
for i from 1 to numint

select TextGrid 'sn$'
label$ = Get label of interval... 1 'i'
# Check to see if the interval has a vowel
if label$ = "i"

vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if label$ = "T"

if tar = 1
vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
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select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Skew_Vowels
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
if tar = 2

vstart = Get starting point... 1 'i'
vend = Get end point... 1 'i'
select Sound 'sn$'
Extract part... vstart-0.25 vend+0.25 Hanning 1 

yes
Rename... 'sn$'_temp
call Reanalyze
call Replace_With_Skewed
# Remove the Skewedvowel
select Sound 'sn$'_skewedvowel
Remove

endif
endif

endfor
if pass = 1

call Passcombine
endif
select Sound 'sn$'_tweaked
Rename... 'sn$'_AllPure_'tar$'

endif
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Appendix II: Final Stimulus Ordering

(All !ller trials have either a 'y' or 'n' in the "Skewed Target" column, whereas the target is

assumed to be skewed in test trials)
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Appendix III: Orientation Screens
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